

Mt. Data

Mt. Data (pronounced “mount data”, like “Mount Everest”) is a
tool to help people collect and store (mountains of) public data
from a variety of sources.

Contents:

	Developer Documentation

Installation

Concepts

A dataset is a collection of related data, usually a single
table. Each dataset knows how to download updates to the data,
how to transform fields names and values, and which fields are
useful for de-duplication.

A store is a means of persisting acquired data. For example,
a particular store might know how to talk to a database to save
data collected by datasets as database tables.

Usage

Indices and tables

	Index

	Module Index

	Search Page

Developer Documentation

It is relatively straightforward to extend Mt. Data in various ways.
The documentation below walks through several common tasks such as
adding a new dataset.

Contents:

	mtdata

Adding a Dataset

A dataset is implemented as a sub-class of the Dataset abstract
class in the mtdata.datasets module. Once the dataset
is implemented, add the class to the list in
mtdata.manifest. Once this is done, the new dataset
will run by default when the mtdata module is run.

It may be easiest to adapt an existing dataset, e.g.
mtdata.datasets.air_quality. See
mtdata.dataset for specific documentation on
mtdata.dataset.Dataset methods.

Adding a Store

mtdata

	mtdata package
	Subpackages
	mtdata.datasets package
	Submodules

	mtdata.datasets.air_quality module

	mtdata.datasets.missoula_911 module

	mtdata.datasets.mt_covid_counts module

	Module contents

	Submodules

	mtdata.backward module

	mtdata.dataset module

	mtdata.fields module

	mtdata.manifest module

	mtdata.parameters module

	mtdata.registry module

	mtdata.row module

	mtdata.storage module

	mtdata.transformer module

	Module contents

mtdata package

Subpackages

	mtdata.datasets package
	Submodules

	mtdata.datasets.air_quality module

	mtdata.datasets.missoula_911 module

	mtdata.datasets.mt_covid_counts module

	Module contents

Submodules

mtdata.backward module

	
mtdata.backward.read_backward(file: BinaryIO) → Iterable[str]

	Read the lines of a text file (opened in binary mode), but backward,
from the last line to the first line.

>>> from io import BytesIO
>>> list(read_backward(BytesIO(b'a\nb')))
['b', 'a\n']
>>> list(read_backward(BytesIO(b'a\nb\n')))
['b\n', 'a\n']
>>> list(read_backward(BytesIO(b'a\n\n')))
['\n', 'a\n']
>>> list(read_backward(BytesIO(b'\n\n')))
['\n', '\n']
>>> list(read_backward(BytesIO(b'\n')))
['\n']
>>> list(read_backward(BytesIO(b'')))
[]

mtdata.dataset module

	
class mtdata.dataset.Dataset

	Bases: abc.ABC

A single collection of data, represented as a table.

	
abstract property dedup_facets: Iterable[str]

	Fields used to determine which rows should be compared for
de-duplication.

For example, if the data are sensor readings for various locations,
the field that indicates the location would be listed here. That
way, we don’t drop a new reading from a different location just
because it occurred at the same time as a reading from a different
location.

Uses the transformed version of the field names.

	
abstract property dedup_fields: Iterable[str]

	Fields used to compare rows for de-duplication. This is likely to
be some kind of timestamp, but that depends on the kind of data.

For example, if the data are sensor readings and each row is
timestamped based on when the reading occurred, then that field
will be listed here because two or more fetches might retrieve the
same reading instance.

Uses the transformed version of the field names.

	
abstract fetch() → mtdata.dataset.FetchResult

	Fetch new data from the source (generally the web).

	
abstract static name() → str

	The dataset name, which is used in the UI and for things
like file and table names.

	
abstract property transformer: mtdata.transformer.Transformer

	The transformer to be applied to each row that is fetched from
the data source before it is stored.

	
class mtdata.dataset.FetchResult(success: bool, message: str, data: Iterable[Dict[str, Any]])

	Bases: tuple

The result of a completed fetch operation. If the operation was
successful (data were acquired, or there were no new data available)
then success should be True, False otherwise.

Upon success, it is reasonable for the message to be the empty
string. However, if the operation failed, then the message field
should contain some kind of explanation suitable for presentation to
the user and inclusion in log files.

If the fetch was successful, then data should contain the rows
that were acquired from the data source. It may be empty if there
were no rows available (this will depend on the source). It should
also be empty on failure.

	
property data

	Alias for field number 2

	
property message

	Alias for field number 1

	
property success

	Alias for field number 0

mtdata.fields module

	
mtdata.fields.prune_fields(row: Dict[str, Any], keys: Iterable[str]) → Dict[str, Any]

	Remove fields from the row that are not included in the iterable
of keys provided. The row is mutated, but also returned to the
caller.

>>> prune_fields({'a': 1, 'b': 2}, ['b'])
{'b': 2}

	
mtdata.fields.rename_fields(row: Dict[str, Any], mapping: Dict[str, str]) → Dict[str, Any]

	Rename the fields of the given row using the name mapping provided.
The row is mutated, but also returned to the caller.

>>> rename_fields({'A': 1, 'b': 2}, {'A': 'a', 'b': 'b'})
{'a': 1, 'b': 2}

mtdata.manifest module

	
mtdata.manifest.get_dataset(name: str) → Optional[Type[mtdata.dataset.Dataset]]

	Get the dataset class with the given name, or None if there is
no dataset implementation in the manifest with that name.

	
mtdata.manifest.get_store(name: str) → Optional[Type[mtdata.storage.Storage]]

	Get the store class with the given name, or None if there is
no store implementation in the manifest with that name.

mtdata.parameters module

	
class mtdata.parameters.Parameters(datasets: Tuple[str], list_datasets: bool, list_stores: bool, namespace: str, stores: Tuple[str])

	Bases: tuple

Parameters supported by the CLI.

	
property datasets

	Alias for field number 0

	
property list_datasets

	Alias for field number 1

	
property list_stores

	Alias for field number 2

	
property namespace

	Alias for field number 3

	
property stores

	Alias for field number 4

	
mtdata.parameters.comma_tuple(arg: str) → Tuple[str, ...]

	A “type” that can be used with ArgumentParser to split a
comma-delimited list of values into an actual list.

TODO: Add a “type” to this that converts the values

	
mtdata.parameters.parse_parameters(args: List[str]) → mtdata.parameters.Parameters

	Turn a list of command line arguments into a Parameters object.

mtdata.registry module

mtdata.row module

mtdata.storage module

	
class mtdata.storage.CSVBasic(namespace: str)

	Bases: mtdata.storage.Storage

A minimal CSV implementation that uses a DictWriter to write rows
to the indicated file.

	
append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields: Iterable[str]) → mtdata.storage.StoreResult

	Append some number of rows to the data currently stored. The
existing data should remain untouched and the new data should,
where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then
de-duplication must occur before the new data are stored. See the
documentation for Dataset for an explanation of these fields.

	
load(name: str) → Iterable[Dict[str, Any]]

	Read in all data and return it as an iterable of rows. The
implementation may choose to read all rows into memory or
stream them through an iterator.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
load_backward(name: str) → Iterable[Dict[str, Any]]

	Load the data in reverse order. Used for de-duplication.

	
static name() → str

	A human-readable name for the storage implementation. Intended for
use in the UI.

By convention, this should be the class name, converted to kabob
case. So a storage class called FancyDatabase would be named
“fancy-database”.

	
name_to_path(name: str) → str

	Name to path conversion that assumes the file extension.

	
replace(name: str, data: Iterable[Dict[str, Any]]) → mtdata.storage.StoreResult

	Delete all data currently stored and replace it with the
given rows.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
class mtdata.storage.JsonLines(namespace: str)

	Bases: mtdata.storage.Storage

A storage implementation that writes each row as a single, JSON-formatted
line in a file. This allows the data to be “streamed” back without
reading in the entire file. It also allows efficient append operations
since the old data needn’t be loaded in order to add more.

Data are stored and retrieved in the order they are appended or replaced.
Therefore, as long as data are always added in chronological order, they
will remain in that order.

	
append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields: Iterable[str]) → mtdata.storage.StoreResult

	Append some number of rows to the data currently stored. The
existing data should remain untouched and the new data should,
where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then
de-duplication must occur before the new data are stored. See the
documentation for Dataset for an explanation of these fields.

	
load(name: str) → Iterable[Dict[str, Any]]

	Read in all data and return it as an iterable of rows. The
implementation may choose to read all rows into memory or
stream them through an iterator.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
load_backward(name: str) → Iterable[Dict[str, Any]]

	Load data from the store in reverse order. In other words, the
first row returned is the row that was most recently added to
the store, and so on.

TODO: Consider making this abstract on the base class

	
static name() → str

	A human-readable name for the storage implementation. Intended for
use in the UI.

By convention, this should be the class name, converted to kabob
case. So a storage class called FancyDatabase would be named
“fancy-database”.

	
name_to_path(name: str) → str

	Convert a name to a file path with the correct extension.

	
replace(name: str, data: Iterable[Dict[str, Any]]) → mtdata.storage.StoreResult

	Delete all data currently stored and replace it with the
given rows.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
class mtdata.storage.Storage(namespace: str)

	Bases: abc.ABC

A generic storage manager that can handle writing data to a file
or other persistence mechanism.

	
abstract append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields: Iterable[str]) → mtdata.storage.StoreResult

	Append some number of rows to the data currently stored. The
existing data should remain untouched and the new data should,
where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then
de-duplication must occur before the new data are stored. See the
documentation for Dataset for an explanation of these fields.

	
static dedup(existing_data: Iterable[Dict[str, Any]], new_data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str] = (), dedup_fields: Iterable[str] = ()) → Iterable[Dict[str, Any]]

	A helper function to de-duplicate data based on the given facets
and fields. This algorithm won’t work for every possible case,
but it ought to cover the most common situations nicely.

Important: the existing_data iterable MUST be in reverse-
chronological order. In other words, the first element of this
iterable must be the most recent row added to the store.

If dedup_facets are provided, then for each new row, search
backward through the existing data to find the most recent row
that matches on those facets, then compare based on the
dedup_fields. If they match, then the row will not be included
in the returned iterable.

If there are no dedup_facets, but there are dedup_fields,
then grab the most recent row from the stored data and compare it
against each row of new data. If any of the new rows match, then
drop that row and all rows that occurred before it, and add the
remaining rows to the returned iterable.

If both dedup parameters are empty, then the new data are passed
through unfiltered.

>>> list(Storage.dedup(
... reversed([{'a': 1}, {'a': 2}]),
... [{'a': 3}], [], ['a']))
[{'a': 3}]
>>> list(Storage.dedup(
... reversed([{'a': 1}, {'a': 2}]),
... [{'a': 2}, {'a': 3}], [], ['a']))
[{'a': 3}]

	
get_path(name: str, extension: str) → str

	A helper for implementations that use the filesystem. Returns a path
to a file with the given name and extension, located in a directory
determined by the namespace property.

	
abstract load(name: str) → Iterable[Dict[str, Any]]

	Read in all data and return it as an iterable of rows. The
implementation may choose to read all rows into memory or
stream them through an iterator.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
abstract static name() → str

	A human-readable name for the storage implementation. Intended for
use in the UI.

By convention, this should be the class name, converted to kabob
case. So a storage class called FancyDatabase would be named
“fancy-database”.

	
property namespace: str

	The namespace is tied to the instance of the running software
and should be used to construct storage paths.

	
abstract replace(name: str, data: Iterable[Dict[str, Any]]) → mtdata.storage.StoreResult

	Delete all data currently stored and replace it with the
given rows.

The name is the identifier associated with the dataset being
stored and should be used to construct any files or tables
required by the storage implementation.

	
class mtdata.storage.StoreResult(success: bool, message: str)

	Bases: tuple

The result of a write operation on a store.

TODO: We should wrap read operation results as well

	
property message

	Alias for field number 1

	
property success

	Alias for field number 0

mtdata.transformer module

	
class mtdata.transformer.Transformer(fields: Iterable[Union[Tuple[str, str, Callable[[Any], Any]], Tuple[str, str]]] = ())

	Bases: object

A transformation that can be applied to a single dataset row
represented as a dictionary. The transformation can update field
names and make arbitrary changes to field data.

When the transformation is applied, the following will happen:

	Any fields not included in the transformation will be pruned

	Fields that have old names specified will be renamed

	Values will be updated for fields that have update functions

The row will be transformed in-place but also returned to the caller.

>>> t = Transformer()
>>> t.add_field('a', 'A')
>>> t.add_field('b', 'B', lambda x: x.lower())
>>> t({'A': 'XYZ', 'B': 'XYZ'})
{'a': 'XYZ', 'b': 'xyz'}

	
add_field(name: str, old_name: Optional[str] = None, updater: Callable[[Any], Any] = <function Transformer.<lambda>>) → None

	Add a field to the transformation.

>>> t = Transformer()
>>> t.add_field('a', 'A', lambda x: x.lower())
>>> t._name_mapping
{'A': 'a'}
>>> t._update_functions['a']('ABC')
'abc'

Module contents

mtdata - a tool for extracting and curating public data

mtdata.datasets package

Submodules

mtdata.datasets.air_quality module

	
class mtdata.datasets.air_quality.AirQuality

	Bases: mtdata.dataset.Dataset

Air quality data for Montana.

	
property dedup_facets: Iterable[str]

	Fields used to determine which rows should be compared for
de-duplication.

For example, if the data are sensor readings for various locations,
the field that indicates the location would be listed here. That
way, we don’t drop a new reading from a different location just
because it occurred at the same time as a reading from a different
location.

Uses the transformed version of the field names.

	
property dedup_fields: Iterable[str]

	Fields used to compare rows for de-duplication. This is likely to
be some kind of timestamp, but that depends on the kind of data.

For example, if the data are sensor readings and each row is
timestamped based on when the reading occurred, then that field
will be listed here because two or more fetches might retrieve the
same reading instance.

Uses the transformed version of the field names.

	
fetch() → mtdata.dataset.FetchResult

	Fetch new data from the source (generally the web).

	
static name() → str

	The dataset name, which is used in the UI and for things
like file and table names.

	
property transformer: mtdata.transformer.Transformer

	The transformer to be applied to each row that is fetched from
the data source before it is stored.

mtdata.datasets.missoula_911 module

	
class mtdata.datasets.missoula_911.Missoula911

	Bases: mtdata.dataset.Dataset

Record of 911 events for Missoula city and county in Montana.

	
property dedup_facets: Iterable[str]

	Fields used to determine which rows should be compared for
de-duplication.

For example, if the data are sensor readings for various locations,
the field that indicates the location would be listed here. That
way, we don’t drop a new reading from a different location just
because it occurred at the same time as a reading from a different
location.

Uses the transformed version of the field names.

	
property dedup_fields: Iterable[str]

	Fields used to compare rows for de-duplication. This is likely to
be some kind of timestamp, but that depends on the kind of data.

For example, if the data are sensor readings and each row is
timestamped based on when the reading occurred, then that field
will be listed here because two or more fetches might retrieve the
same reading instance.

Uses the transformed version of the field names.

	
fetch() → mtdata.dataset.FetchResult

	Fetch new data from the source (generally the web).

	
static name() → str

	The dataset name, which is used in the UI and for things
like file and table names.

	
property transformer: mtdata.transformer.Transformer

	The transformer to be applied to each row that is fetched from
the data source before it is stored.

mtdata.datasets.mt_covid_counts module

	
class mtdata.datasets.mt_covid_counts.CovidCounts

	Bases: mtdata.dataset.Dataset

Covid-19 case data for Montana.

Source front-end display: https://www.arcgis.com/apps/MapSeries/index.html?appid=7c34f3412536439491adcc2103421d4b

	
property dedup_facets: Iterable[str]

	Fields used to determine which rows should be compared for
de-duplication.

For example, if the data are sensor readings for various locations,
the field that indicates the location would be listed here. That
way, we don’t drop a new reading from a different location just
because it occurred at the same time as a reading from a different
location.

Uses the transformed version of the field names.

	
property dedup_fields: Iterable[str]

	Fields used to compare rows for de-duplication. This is likely to
be some kind of timestamp, but that depends on the kind of data.

For example, if the data are sensor readings and each row is
timestamped based on when the reading occurred, then that field
will be listed here because two or more fetches might retrieve the
same reading instance.

Uses the transformed version of the field names.

	
fetch() → mtdata.dataset.FetchResult

	Fetch new data from the source (generally the web).

	
static name() → str

	The dataset name, which is used in the UI and for things
like file and table names.

	
property transformer: mtdata.transformer.Transformer

	The transformer to be applied to each row that is fetched from
the data source before it is stored.

Module contents

datasets - a collection of curated, built-in datasets

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mtdata	

 	
 	
 mtdata.backward	

 	
 	
 mtdata.dataset	

 	
 	
 mtdata.datasets	

 	
 	
 mtdata.datasets.air_quality	

 	
 	
 mtdata.datasets.missoula_911	

 	
 	
 mtdata.datasets.mt_covid_counts	

 	
 	
 mtdata.fields	

 	
 	
 mtdata.manifest	

 	
 	
 mtdata.parameters	

 	
 	
 mtdata.row	

 	
 	
 mtdata.storage	

 	
 	
 mtdata.transformer	

Index

 A
 | C
 | D
 | F
 | G
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	add_field() (mtdata.transformer.Transformer method)

 	AirQuality (class in mtdata.datasets.air_quality)

 	
 	append() (mtdata.storage.CSVBasic method)

 	(mtdata.storage.JsonLines method)

 	(mtdata.storage.Storage method)

C

 	
 	comma_tuple() (in module mtdata.parameters)

 	
 	CovidCounts (class in mtdata.datasets.mt_covid_counts)

 	CSVBasic (class in mtdata.storage)

D

 	
 	data (mtdata.dataset.FetchResult property)

 	Dataset (class in mtdata.dataset)

 	datasets (mtdata.parameters.Parameters property)

 	dedup() (mtdata.storage.Storage static method)

 	dedup_facets (mtdata.dataset.Dataset property)

 	(mtdata.datasets.air_quality.AirQuality property)

 	(mtdata.datasets.missoula_911.Missoula911 property)

 	(mtdata.datasets.mt_covid_counts.CovidCounts property)

 	
 	dedup_fields (mtdata.dataset.Dataset property)

 	(mtdata.datasets.air_quality.AirQuality property)

 	(mtdata.datasets.missoula_911.Missoula911 property)

 	(mtdata.datasets.mt_covid_counts.CovidCounts property)

F

 	
 	fetch() (mtdata.dataset.Dataset method)

 	(mtdata.datasets.air_quality.AirQuality method)

 	(mtdata.datasets.missoula_911.Missoula911 method)

 	(mtdata.datasets.mt_covid_counts.CovidCounts method)

 	
 	FetchResult (class in mtdata.dataset)

G

 	
 	get_dataset() (in module mtdata.manifest)

 	
 	get_path() (mtdata.storage.Storage method)

 	get_store() (in module mtdata.manifest)

J

 	
 	JsonLines (class in mtdata.storage)

L

 	
 	list_datasets (mtdata.parameters.Parameters property)

 	list_stores (mtdata.parameters.Parameters property)

 	load() (mtdata.storage.CSVBasic method)

 	(mtdata.storage.JsonLines method)

 	(mtdata.storage.Storage method)

 	
 	load_backward() (mtdata.storage.CSVBasic method)

 	(mtdata.storage.JsonLines method)

M

 	
 	message (mtdata.dataset.FetchResult property)

 	(mtdata.storage.StoreResult property)

 	Missoula911 (class in mtdata.datasets.missoula_911)

 	
 module

 	mtdata

 	mtdata.backward

 	mtdata.dataset

 	mtdata.datasets

 	mtdata.datasets.air_quality

 	mtdata.datasets.missoula_911

 	mtdata.datasets.mt_covid_counts

 	mtdata.fields

 	mtdata.manifest

 	mtdata.parameters

 	mtdata.row

 	mtdata.storage

 	mtdata.transformer

 	
 mtdata

 	module

 	
 mtdata.backward

 	module

 	
 	
 mtdata.dataset

 	module

 	
 mtdata.datasets

 	module

 	
 mtdata.datasets.air_quality

 	module

 	
 mtdata.datasets.missoula_911

 	module

 	
 mtdata.datasets.mt_covid_counts

 	module

 	
 mtdata.fields

 	module

 	
 mtdata.manifest

 	module

 	
 mtdata.parameters

 	module

 	
 mtdata.row

 	module

 	
 mtdata.storage

 	module

 	
 mtdata.transformer

 	module

N

 	
 	name() (mtdata.dataset.Dataset static method)

 	(mtdata.datasets.air_quality.AirQuality static method)

 	(mtdata.datasets.missoula_911.Missoula911 static method)

 	(mtdata.datasets.mt_covid_counts.CovidCounts static method)

 	(mtdata.storage.CSVBasic static method)

 	(mtdata.storage.JsonLines static method)

 	(mtdata.storage.Storage static method)

 	
 	name_to_path() (mtdata.storage.CSVBasic method)

 	(mtdata.storage.JsonLines method)

 	namespace (mtdata.parameters.Parameters property)

 	(mtdata.storage.Storage property)

P

 	
 	Parameters (class in mtdata.parameters)

 	
 	parse_parameters() (in module mtdata.parameters)

 	prune_fields() (in module mtdata.fields)

R

 	
 	read_backward() (in module mtdata.backward)

 	rename_fields() (in module mtdata.fields)

 	
 	replace() (mtdata.storage.CSVBasic method)

 	(mtdata.storage.JsonLines method)

 	(mtdata.storage.Storage method)

S

 	
 	Storage (class in mtdata.storage)

 	StoreResult (class in mtdata.storage)

 	
 	stores (mtdata.parameters.Parameters property)

 	success (mtdata.dataset.FetchResult property)

 	(mtdata.storage.StoreResult property)

T

 	
 	Transformer (class in mtdata.transformer)

 	transformer (mtdata.dataset.Dataset property)

 	(mtdata.datasets.air_quality.AirQuality property)

 	(mtdata.datasets.missoula_911.Missoula911 property)

 	(mtdata.datasets.mt_covid_counts.CovidCounts property)

 nav.xhtml

 Table of Contents

 		
 Mt. Data

 		
 Developer Documentation

 		
 mtdata

 		
 mtdata package

 		
 Adding a Dataset

 		
 Adding a Store

_static/minus.png

_static/plus.png

_static/file.png

