
Mt. Data
Release 2.0.1

George Lesica, Smai Fullerton, Eric Dietrich

Sep 25, 2023





CONTENTS:

1 Developer Documentation 3

2 Installation 13

3 Concepts 15

4 Usage 17

5 Indices and tables 19

Python Module Index 21

Index 23

i



ii



Mt. Data, Release 2.0.1

Mt. Data (pronounced “mount data”, like “Mount Everest”) is a tool to help people collect and store (mountains of)
public data from a variety of sources.

CONTENTS: 1



Mt. Data, Release 2.0.1

2 CONTENTS:



CHAPTER

ONE

DEVELOPER DOCUMENTATION

It is relatively straightforward to extend Mt. Data in various ways. The documentation below walks through several
common tasks such as adding a new dataset.

1.1 mtdata

1.1.1 mtdata package

Subpackages

mtdata.datasets package

Submodules

mtdata.datasets.air_quality module

class mtdata.datasets.air_quality.AirQuality

Bases: Dataset

Air quality data for Montana.

property dedup_facets: Iterable[str]

Fields used to determine which rows should be compared for de-duplication.

For example, if the data are sensor readings for various locations, the field that indicates the location would
be listed here. That way, we don’t drop a new reading from a different location just because it occurred at
the same time as a reading from a different location.

Uses the transformed version of the field names.

property dedup_fields: Iterable[str]

Fields used to compare rows for de-duplication. This is likely to be some kind of timestamp, but that
depends on the kind of data.

For example, if the data are sensor readings and each row is timestamped based on when the reading oc-
curred, then that field will be listed here because two or more fetches might retrieve the same reading
instance.

Uses the transformed version of the field names.

3



Mt. Data, Release 2.0.1

fetch()→ FetchResult
Fetch new data from the source (generally the web).

static name()→ str
The dataset name, which is used in the UI and for things like file and table names.

property transformer: Transformer

The transformer to be applied to each row that is fetched from the data source before it is stored.

mtdata.datasets.missoula_911 module

class mtdata.datasets.missoula_911.Missoula911

Bases: Dataset

Record of 911 events for Missoula city and county in Montana.

property dedup_facets: Iterable[str]

Fields used to determine which rows should be compared for de-duplication.

For example, if the data are sensor readings for various locations, the field that indicates the location would
be listed here. That way, we don’t drop a new reading from a different location just because it occurred at
the same time as a reading from a different location.

Uses the transformed version of the field names.

property dedup_fields: Iterable[str]

Fields used to compare rows for de-duplication. This is likely to be some kind of timestamp, but that
depends on the kind of data.

For example, if the data are sensor readings and each row is timestamped based on when the reading oc-
curred, then that field will be listed here because two or more fetches might retrieve the same reading
instance.

Uses the transformed version of the field names.

fetch()→ FetchResult
Fetch new data from the source (generally the web).

static name()→ str
The dataset name, which is used in the UI and for things like file and table names.

property transformer: Transformer

The transformer to be applied to each row that is fetched from the data source before it is stored.

mtdata.datasets.mt_covid_counts module

class mtdata.datasets.mt_covid_counts.CovidCounts

Bases: Dataset

Covid-19 case data for Montana.

Source front-end display: https://www.arcgis.com/apps/MapSeries/index.html?appid=
7c34f3412536439491adcc2103421d4b

4 Chapter 1. Developer Documentation

https://www.arcgis.com/apps/MapSeries/index.html?appid=7c34f3412536439491adcc2103421d4b
https://www.arcgis.com/apps/MapSeries/index.html?appid=7c34f3412536439491adcc2103421d4b


Mt. Data, Release 2.0.1

property dedup_facets: Iterable[str]

Fields used to determine which rows should be compared for de-duplication.

For example, if the data are sensor readings for various locations, the field that indicates the location would
be listed here. That way, we don’t drop a new reading from a different location just because it occurred at
the same time as a reading from a different location.

Uses the transformed version of the field names.

property dedup_fields: Iterable[str]

Fields used to compare rows for de-duplication. This is likely to be some kind of timestamp, but that
depends on the kind of data.

For example, if the data are sensor readings and each row is timestamped based on when the reading oc-
curred, then that field will be listed here because two or more fetches might retrieve the same reading
instance.

Uses the transformed version of the field names.

fetch()→ FetchResult
Fetch new data from the source (generally the web).

static name()→ str
The dataset name, which is used in the UI and for things like file and table names.

property transformer: Transformer

The transformer to be applied to each row that is fetched from the data source before it is stored.

Module contents

datasets - a collection of curated, built-in datasets

Submodules

mtdata.backward module

mtdata.backward.read_backward(file: BinaryIO)→ Iterable[str]
Read the lines of a text file (opened in binary mode), but backward, from the last line to the first line.

>>> from io import BytesIO
>>> list(read_backward(BytesIO(b'a\nb')))
['b', 'a\n']
>>> list(read_backward(BytesIO(b'a\nb\n')))
['b\n', 'a\n']
>>> list(read_backward(BytesIO(b'a\n\n')))
['\n', 'a\n']
>>> list(read_backward(BytesIO(b'\n\n')))
['\n', '\n']
>>> list(read_backward(BytesIO(b'\n')))
['\n']
>>> list(read_backward(BytesIO(b'')))
[]

1.1. mtdata 5



Mt. Data, Release 2.0.1

mtdata.dataset module

class mtdata.dataset.Dataset

Bases: ABC

A single collection of data, represented as a table.

abstract property dedup_facets: Iterable[str]

Fields used to determine which rows should be compared for de-duplication.

For example, if the data are sensor readings for various locations, the field that indicates the location would
be listed here. That way, we don’t drop a new reading from a different location just because it occurred at
the same time as a reading from a different location.

Uses the transformed version of the field names.

abstract property dedup_fields: Iterable[str]

Fields used to compare rows for de-duplication. This is likely to be some kind of timestamp, but that
depends on the kind of data.

For example, if the data are sensor readings and each row is timestamped based on when the reading oc-
curred, then that field will be listed here because two or more fetches might retrieve the same reading
instance.

Uses the transformed version of the field names.

abstract fetch()→ FetchResult
Fetch new data from the source (generally the web).

abstract static name()→ str
The dataset name, which is used in the UI and for things like file and table names.

abstract property transformer: Transformer

The transformer to be applied to each row that is fetched from the data source before it is stored.

class mtdata.dataset.FetchResult(success: bool, message: str, data: Iterable[Dict[str, Any]])
Bases: tuple

The result of a completed fetch operation. If the operation was successful (data were acquired, or there were no
new data available) then success should be True, False otherwise.

Upon success, it is reasonable for the message to be the empty string. However, if the operation failed, then the
message field should contain some kind of explanation suitable for presentation to the user and inclusion in log
files.

If the fetch was successful, then data should contain the rows that were acquired from the data source. It may
be empty if there were no rows available (this will depend on the source). It should also be empty on failure.

property data

Alias for field number 2

property message

Alias for field number 1

property success

Alias for field number 0

6 Chapter 1. Developer Documentation



Mt. Data, Release 2.0.1

mtdata.fields module

mtdata.fields.prune_fields(row: Dict[str, Any], keys: Iterable[str])→ Dict[str, Any]
Remove fields from the row that are not included in the iterable of keys provided. The row is mutated, but also
returned to the caller.

>>> prune_fields({'a': 1, 'b': 2}, ['b'])
{'b': 2}

mtdata.fields.rename_fields(row: Dict[str, Any], mapping: Dict[str, str])→ Dict[str, Any]
Rename the fields of the given row using the name mapping provided. The row is mutated, but also returned to
the caller.

>>> rename_fields({'A': 1, 'b': 2}, {'A': 'a', 'b': 'b'})
{'a': 1, 'b': 2}

mtdata.manifest module

mtdata.manifest.get_dataset(name: str)→ Optional[Type[Dataset]]
Get the dataset class with the given name, or None if there is no dataset implementation in the manifest with that
name.

mtdata.manifest.get_store(name: str)→ Optional[Type[Storage]]
Get the store class with the given name, or None if there is no store implementation in the manifest with that
name.

mtdata.parameters module

class mtdata.parameters.Parameters(datasets: Tuple[str], list_datasets: bool, list_stores: bool, namespace:
str, stores: Tuple[str])

Bases: tuple

Parameters supported by the CLI.

property datasets

Alias for field number 0

property list_datasets

Alias for field number 1

property list_stores

Alias for field number 2

property namespace

Alias for field number 3

property stores

Alias for field number 4

mtdata.parameters.comma_tuple(arg: str)→ Tuple[str, ...]
A “type” that can be used with ArgumentParser to split a comma-delimited list of values into an actual list.

TODO: Add a “type” to this that converts the values

1.1. mtdata 7



Mt. Data, Release 2.0.1

mtdata.parameters.parse_parameters(args: List[str])→ Parameters
Turn a list of command line arguments into a Parameters object.

mtdata.registry module

mtdata.row module

mtdata.storage module

class mtdata.storage.CSVBasic(namespace: str)
Bases: Storage

A minimal CSV implementation that uses a DictWriter to write rows to the indicated file.

append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields: Iterable[str])→
StoreResult

Append some number of rows to the data currently stored. The existing data should remain untouched and
the new data should, where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then de-duplication must occur before the new data
are stored. See the documentation for Dataset for an explanation of these fields.

load(name: str)→ Iterable[Dict[str, Any]]
Read in all data and return it as an iterable of rows. The implementation may choose to read all rows into
memory or stream them through an iterator.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

load_backward(name: str)→ Iterable[Dict[str, Any]]
Load the data in reverse order. Used for de-duplication.

static name()→ str
A human-readable name for the storage implementation. Intended for use in the UI.

By convention, this should be the class name, converted to kabob case. So a storage class called
FancyDatabase would be named “fancy-database”.

name_to_path(name: str)→ str
Name to path conversion that assumes the file extension.

replace(name: str, data: Iterable[Dict[str, Any]])→ StoreResult
Delete all data currently stored and replace it with the given rows.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

class mtdata.storage.JsonLines(namespace: str)
Bases: Storage

A storage implementation that writes each row as a single, JSON-formatted line in a file. This allows the data
to be “streamed” back without reading in the entire file. It also allows efficient append operations since the old
data needn’t be loaded in order to add more.

Data are stored and retrieved in the order they are appended or replaced. Therefore, as long as data are always
added in chronological order, they will remain in that order.

8 Chapter 1. Developer Documentation



Mt. Data, Release 2.0.1

append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields: Iterable[str])→
StoreResult

Append some number of rows to the data currently stored. The existing data should remain untouched and
the new data should, where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then de-duplication must occur before the new data
are stored. See the documentation for Dataset for an explanation of these fields.

load(name: str)→ Iterable[Dict[str, Any]]
Read in all data and return it as an iterable of rows. The implementation may choose to read all rows into
memory or stream them through an iterator.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

load_backward(name: str)→ Iterable[Dict[str, Any]]
Load data from the store in reverse order. In other words, the first row returned is the row that was most
recently added to the store, and so on.

TODO: Consider making this abstract on the base class

static name()→ str
A human-readable name for the storage implementation. Intended for use in the UI.

By convention, this should be the class name, converted to kabob case. So a storage class called
FancyDatabase would be named “fancy-database”.

name_to_path(name: str)→ str
Convert a name to a file path with the correct extension.

replace(name: str, data: Iterable[Dict[str, Any]])→ StoreResult
Delete all data currently stored and replace it with the given rows.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

class mtdata.storage.Storage(namespace: str)
Bases: ABC

A generic storage manager that can handle writing data to a file or other persistence mechanism.

abstract append(name: str, data: Iterable[Dict[str, Any]], dedup_facets: Iterable[str], dedup_fields:
Iterable[str])→ StoreResult

Append some number of rows to the data currently stored. The existing data should remain untouched and
the new data should, where it makes sense, be stored “after” the existing data.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

If dedup_facets and dedup_fields are non-empty, then de-duplication must occur before the new data
are stored. See the documentation for Dataset for an explanation of these fields.

static dedup(existing_data: Iterable[Dict[str, Any]], new_data: Iterable[Dict[str, Any]], dedup_facets:
Iterable[str] = (), dedup_fields: Iterable[str] = ())→ Iterable[Dict[str, Any]]

A helper function to de-duplicate data based on the given facets and fields. This algorithm won’t work for
every possible case, but it ought to cover the most common situations nicely.

1.1. mtdata 9



Mt. Data, Release 2.0.1

Important: the existing_data iterable MUST be in reverse- chronological order. In other words, the first
element of this iterable must be the most recent row added to the store.

If dedup_facets are provided, then for each new row, search backward through the existing data to find
the most recent row that matches on those facets, then compare based on the dedup_fields. If they match,
then the row will not be included in the returned iterable.

If there are no dedup_facets, but there are dedup_fields, then grab the most recent row from the stored
data and compare it against each row of new data. If any of the new rows match, then drop that row and all
rows that occurred before it, and add the remaining rows to the returned iterable.

If both dedup parameters are empty, then the new data are passed through unfiltered.

>>> list(Storage.dedup(
... reversed([{'a': 1}, {'a': 2}]),
... [{'a': 3}], [], ['a']))
[{'a': 3}]
>>> list(Storage.dedup(
... reversed([{'a': 1}, {'a': 2}]),
... [{'a': 2}, {'a': 3}], [], ['a']))
[{'a': 3}]

get_path(name: str, extension: str)→ str
A helper for implementations that use the filesystem. Returns a path to a file with the given name and
extension, located in a directory determined by the namespace property.

abstract load(name: str)→ Iterable[Dict[str, Any]]
Read in all data and return it as an iterable of rows. The implementation may choose to read all rows into
memory or stream them through an iterator.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

abstract static name()→ str
A human-readable name for the storage implementation. Intended for use in the UI.

By convention, this should be the class name, converted to kabob case. So a storage class called
FancyDatabase would be named “fancy-database”.

property namespace: str

The namespace is tied to the instance of the running software and should be used to construct storage paths.

abstract replace(name: str, data: Iterable[Dict[str, Any]])→ StoreResult
Delete all data currently stored and replace it with the given rows.

The name is the identifier associated with the dataset being stored and should be used to construct any files
or tables required by the storage implementation.

class mtdata.storage.StoreResult(success: bool, message: str)
Bases: tuple

The result of a write operation on a store.

TODO: We should wrap read operation results as well

property message

Alias for field number 1

property success

Alias for field number 0

10 Chapter 1. Developer Documentation



Mt. Data, Release 2.0.1

mtdata.transformer module

class mtdata.transformer.Transformer(fields: Iterable[Union[Tuple[str, str, Callable[[Any], Any]],
Tuple[str, str]]] = ())

Bases: object

A transformation that can be applied to a single dataset row represented as a dictionary. The transformation can
update field names and make arbitrary changes to field data.

When the transformation is applied, the following will happen:

1. Any fields not included in the transformation will be pruned

2. Fields that have old names specified will be renamed

3. Values will be updated for fields that have update functions

The row will be transformed in-place but also returned to the caller.

>>> t = Transformer()
>>> t.add_field('a', 'A')
>>> t.add_field('b', 'B', lambda x: x.lower())
>>> t({'A': 'XYZ', 'B': 'XYZ'})
{'a': 'XYZ', 'b': 'xyz'}

add_field(name: str, old_name: ~typing.Optional[str] = None, updater: ~typing.Callable[[~typing.Any],
~typing.Any] = <function Transformer.<lambda>>)→ None

Add a field to the transformation.

>>> t = Transformer()
>>> t.add_field('a', 'A', lambda x: x.lower())
>>> t._name_mapping
{'A': 'a'}
>>> t._update_functions['a']('ABC')
'abc'

Module contents

mtdata - a tool for extracting and curating public data

1.2 Adding a Dataset

A dataset is implemented as a sub-class of the Dataset abstract class in the mtdata.datasets module. Once the
dataset is implemented, add the class to the list in mtdata.manifest. Once this is done, the new dataset will run by
default when the mtdata module is run.

It may be easiest to adapt an existing dataset, e.g. mtdata.datasets.air_quality. See mtdata.dataset for
specific documentation on mtdata.dataset.Dataset methods.

1.2. Adding a Dataset 11



Mt. Data, Release 2.0.1

1.3 Adding a Store

12 Chapter 1. Developer Documentation



CHAPTER

TWO

INSTALLATION

13



Mt. Data, Release 2.0.1

14 Chapter 2. Installation



CHAPTER

THREE

CONCEPTS

A dataset is a collection of related data, usually a single table. Each dataset knows how to download updates to the
data, how to transform fields names and values, and which fields are useful for de-duplication.

A store is a means of persisting acquired data. For example, a particular store might know how to talk to a database to
save data collected by datasets as database tables.

15



Mt. Data, Release 2.0.1

16 Chapter 3. Concepts



CHAPTER

FOUR

USAGE

17



Mt. Data, Release 2.0.1

18 Chapter 4. Usage



CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

19



Mt. Data, Release 2.0.1

20 Chapter 5. Indices and tables



PYTHON MODULE INDEX

m
mtdata, 11
mtdata.backward, 5
mtdata.dataset, 6
mtdata.datasets, 5
mtdata.datasets.air_quality, 3
mtdata.datasets.missoula_911, 4
mtdata.datasets.mt_covid_counts, 4
mtdata.fields, 7
mtdata.manifest, 7
mtdata.parameters, 7
mtdata.row, 8
mtdata.storage, 8
mtdata.transformer, 11

21



Mt. Data, Release 2.0.1

22 Python Module Index



INDEX

A
add_field() (mtdata.transformer.Transformer method),

11
AirQuality (class in mtdata.datasets.air_quality), 3
append() (mtdata.storage.CSVBasic method), 8
append() (mtdata.storage.JsonLines method), 8
append() (mtdata.storage.Storage method), 9

C
comma_tuple() (in module mtdata.parameters), 7
CovidCounts (class in mt-

data.datasets.mt_covid_counts), 4
CSVBasic (class in mtdata.storage), 8

D
data (mtdata.dataset.FetchResult property), 6
Dataset (class in mtdata.dataset), 6
datasets (mtdata.parameters.Parameters property), 7
dedup() (mtdata.storage.Storage static method), 9
dedup_facets (mtdata.dataset.Dataset property), 6
dedup_facets (mtdata.datasets.air_quality.AirQuality

property), 3
dedup_facets (mtdata.datasets.missoula_911.Missoula911

property), 4
dedup_facets (mtdata.datasets.mt_covid_counts.CovidCounts

property), 4
dedup_fields (mtdata.dataset.Dataset property), 6
dedup_fields (mtdata.datasets.air_quality.AirQuality

property), 3
dedup_fields (mtdata.datasets.missoula_911.Missoula911

property), 4
dedup_fields (mtdata.datasets.mt_covid_counts.CovidCounts

property), 5

F
fetch() (mtdata.dataset.Dataset method), 6
fetch() (mtdata.datasets.air_quality.AirQuality

method), 3
fetch() (mtdata.datasets.missoula_911.Missoula911

method), 4
fetch() (mtdata.datasets.mt_covid_counts.CovidCounts

method), 5

FetchResult (class in mtdata.dataset), 6

G
get_dataset() (in module mtdata.manifest), 7
get_path() (mtdata.storage.Storage method), 10
get_store() (in module mtdata.manifest), 7

J
JsonLines (class in mtdata.storage), 8

L
list_datasets (mtdata.parameters.Parameters prop-

erty), 7
list_stores (mtdata.parameters.Parameters property),

7
load() (mtdata.storage.CSVBasic method), 8
load() (mtdata.storage.JsonLines method), 9
load() (mtdata.storage.Storage method), 10
load_backward() (mtdata.storage.CSVBasic method), 8
load_backward() (mtdata.storage.JsonLines method), 9

M
message (mtdata.dataset.FetchResult property), 6
message (mtdata.storage.StoreResult property), 10
Missoula911 (class in mtdata.datasets.missoula_911), 4
module

mtdata, 11
mtdata.backward, 5
mtdata.dataset, 6
mtdata.datasets, 5
mtdata.datasets.air_quality, 3
mtdata.datasets.missoula_911, 4
mtdata.datasets.mt_covid_counts, 4
mtdata.fields, 7
mtdata.manifest, 7
mtdata.parameters, 7
mtdata.row, 8
mtdata.storage, 8
mtdata.transformer, 11

mtdata
module, 11

mtdata.backward

23



Mt. Data, Release 2.0.1

module, 5
mtdata.dataset
module, 6

mtdata.datasets
module, 5

mtdata.datasets.air_quality
module, 3

mtdata.datasets.missoula_911
module, 4

mtdata.datasets.mt_covid_counts
module, 4

mtdata.fields
module, 7

mtdata.manifest
module, 7

mtdata.parameters
module, 7

mtdata.row
module, 8

mtdata.storage
module, 8

mtdata.transformer
module, 11

N
name() (mtdata.dataset.Dataset static method), 6
name() (mtdata.datasets.air_quality.AirQuality static

method), 4
name() (mtdata.datasets.missoula_911.Missoula911

static method), 4
name() (mtdata.datasets.mt_covid_counts.CovidCounts

static method), 5
name() (mtdata.storage.CSVBasic static method), 8
name() (mtdata.storage.JsonLines static method), 9
name() (mtdata.storage.Storage static method), 10
name_to_path() (mtdata.storage.CSVBasic method), 8
name_to_path() (mtdata.storage.JsonLines method), 9
namespace (mtdata.parameters.Parameters property), 7
namespace (mtdata.storage.Storage property), 10

P
Parameters (class in mtdata.parameters), 7
parse_parameters() (in module mtdata.parameters), 7
prune_fields() (in module mtdata.fields), 7

R
read_backward() (in module mtdata.backward), 5
rename_fields() (in module mtdata.fields), 7
replace() (mtdata.storage.CSVBasic method), 8
replace() (mtdata.storage.JsonLines method), 9
replace() (mtdata.storage.Storage method), 10

S
Storage (class in mtdata.storage), 9

StoreResult (class in mtdata.storage), 10
stores (mtdata.parameters.Parameters property), 7
success (mtdata.dataset.FetchResult property), 6
success (mtdata.storage.StoreResult property), 10

T
Transformer (class in mtdata.transformer), 11
transformer (mtdata.dataset.Dataset property), 6
transformer (mtdata.datasets.air_quality.AirQuality

property), 4
transformer (mtdata.datasets.missoula_911.Missoula911

property), 4
transformer (mtdata.datasets.mt_covid_counts.CovidCounts

property), 5

24 Index


	Developer Documentation
	mtdata
	mtdata package
	Subpackages
	mtdata.datasets package
	Submodules
	mtdata.datasets.air_quality module
	mtdata.datasets.missoula_911 module
	mtdata.datasets.mt_covid_counts module
	Module contents


	Submodules
	mtdata.backward module
	mtdata.dataset module
	mtdata.fields module
	mtdata.manifest module
	mtdata.parameters module
	mtdata.registry module
	mtdata.row module
	mtdata.storage module
	mtdata.transformer module
	Module contents


	Adding a Dataset
	Adding a Store

	Installation
	Concepts
	Usage
	Indices and tables
	Python Module Index
	Index

